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Abstract

Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode
multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes,
including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-
based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than
global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory
network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions
among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions
identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization
provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding
we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.
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Introduction

The organization and integration of multiple signals endow

intercellular regulatory networks with information processing

capabilities. For example, hormones modulate physiology and

maintain homeostasis in variable environments [reviewed in 1],

and morphogens give rise to intricate patterns during development

[reviewed in 2]. Nevertheless, how simple circuits are organized

into complex networks that perform sophisticated functions is not

fully understood.

The ILPs are a superfamily of hormones that regulate many

processes, including development, cell proliferation, energy

metabolism, neuronal function, reproduction stress resistance,

and longevity [3–15]. Canonical ILP signaling is mediated by a

receptor tyrosine kinase pathway that culminates in the regulation

of FOXO transcription factors and other regulatory molecules

[16]. In Caenorhabditis elegans, this occurs via the DAF-2 ILP

receptor tyrosine kinase, which signals through DAF-16 FOXO

[6,17–19]. The importance of ILP signaling is underscored by the

conservation of both the signal transduction pathway and the
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processes they regulate. Indeed, a C. elegans ILP (INS-6) resembles

human insulin structurally and can bind and activate the human

insulin receptor [20].

Most animal genomes encode multiple ILPs: humans have 10

[21]; Drosophila melanogaster has 8 [22–24]; and C. elegans has 40

[25–27]. Small-scale studies have shown that certain ILPs can

regulate other ILPs [4,24,28–31], and that ILPs can act as either

agonists or antagonists of their receptor to differentially affect

multiple processes [5,24,27]. How do such simple interactions

between these hormones generate complex functionality? Here,

we address this question by an integrated analysis of the C. elegans

ILPs during larval development, stress resistance, reproduction

and lifespan. We systematically tested the function of C. elegans

ILPs in the control of diverse phenotypes. In contrast to the

common notion of broad redundancy among ILPs [32], we now

provide evidence supporting a combinatorial code of action that

maps the ILPs to multiple phenotypes. We also uncover the

existence of a C. elegans ILP-to-ILP regulatory network that reveals

the mechanisms through which multiple functionally diversified

ILPs interact to regulate complex developmental and physiological

traits. Thus, our analysis of the ILP-to-ILP network provides

organizational principles for multiple-gene families and signaling

networks.

Results

An ILP Combinatorial Code for Coordinating
Development and Physiology

As in many animals, the C. elegans daf-2 insulin/ILP receptor

pathway affects multiple physiological processes, including devel-

opment, aging, pathogen resistance, thermotolerance and repro-

duction [6,8,9,17,33–37]. The C. elegans ILP pathway also

regulates entry into a specialized form of larval arrest known as

dauer that forms preferentially under adverse conditions, such as

high temperature, high population density, and low dietary sterols

and food levels [reviewed in 6]. Under favorable conditions,

animals exit the dauer stage to resume reproductive growth. Dauer

exit is also regulated by the ILP pathway [34,38], which suggests

that ILPs function to regulate developmental plasticity in response

to complex environmental cues [5,31].

Previous studies, which focused on a few ILPs, suggest that

different phenotypes are modulated by distinct ILPs [4,5,11,26,27].

These ILPs can exhibit complex functional interactions in the

regulation of certain phenotypes [4,5]. Together, these obser-

vations have raised the possible existence of an ILP combina-

torial code in regulating physiology, in contrast to the prevailing

notion of widespread redundancy as a feature of the ILPs and

other gene families [32]. We tested this possibility by mapping

the relationships between the 40 C. elegans ILPs, ins-1 to ins-39

and daf-28 [25–27], and their developmental and physiological

outputs. We systematically tested mutants in 35 ILPs for 8

distinct developmental and physiological phenotypes (Figures 1

and S1). Thirty-four of these mutations delete part or all of the

coding sequence of an ILP and are predicted to be null

mutations. One mutation, ins-10(tm3498), contained a deletion

in the genomic sequence and a duplication that overexpressed

the intact coding sequence, which represents a gain-of-function

allele (Table S5, Figure S2 and Materials and Methods). To

minimize genetic background effects, all mutants were out-

crossed 6 times to wild type.

We used well-established procedures to score the ILP mutants

and applied several statistical criteria to classify the phenotypes as

high or low confidence based on statistical significance and

reproducibility (see Materials and Methods). We also confirmed

the roles of many ILPs that showed new phenotypes or

represented key conclusions in this study by rescuing their

phenotypes with a transgene bearing the wild-type copy of the

corresponding gene, as described in the following sections and in

Table S3. We included our previously published work in the

analysis for comparison (Figures 1 and S1, Table S2) [4,5].

Importantly, we implicated distinct combinations of ILPs in every

process tested and ascribed new functions to more than half of the

C. elegans ILPs (Figure 1): 66% (23/35) of those tested showed at

least one high-confidence phenotype, and 89% (31/35) showed

high- or low-confidence phenotypes. We focused our analysis on

the high-confidence hits.

Dauer entry. First, we screened single mutants at 27uC. In

addition to the previously identified daf-28 [5], we found increased

dauer entry rates in the loss-of-function alleles of ins-33 (,11%

increase) and ins-35 (,8% increase), and the gain-of-function allele

of ins-10 (,9% increase) (Figure 1B, Table S2). Although this

screen yielded high-confidence hits, we performed additional

sensitized screens for two reasons. Besides the possibility of

redundancy, the low dauer entry rate in wild-type animals made it

difficult to detect ILPs that act to promote dauer entry. Thus, we

screened for enhancers and suppressors under two conditions

where intermediate levels of dauer entry were observed: in

mutants with the weak daf-2(e1368) mutation at 22.5uC [34]

(Figure 1C, Table S2), or the dominant negative daf-28(sa191)

mutation at 20uC [26] (Figure 1D, Table S2). Screening in the daf-

2(e1368) background identified a new high-confidence suppressor:

ins-12 (,16% less dauers); and enhancers of dauer entry: ins-4

(,12%), ins-14 (,17%), ins-33 (,18%) and ins-35 (,49%).

Screening in the dominant negative daf-28(sa191) background

identified additional high-confidence enhancers with increases in

dauer entry rates: ins-5 (27%), ins-8 (14%), ins-11 (,12%), ins-

21(,15%), ins-22 (16%), ins-23 (16%) and ins-26 (,19%); and

suppressors with decreases in dauer entry rates: ins-3 (,15%) and

ins-13 (,15%), along with previously reported ILPs [5,27,39]. We

rescued the dauer entry phenotypes of ins-12, ins-14, ins-33 and ins-

35 in the daf-2(e1368) background; and of ins-3, ins-4, ins-5, ins-21

and ins-26 in the daf-28(sa191) background (Table S3).

Author Summary

Insulin signaling is widely implicated in regulating diverse
physiological processes ranging from metabolism to
longevity across many animal species. Many animals have
multiple insulin-like peptides that can regulate the activity
of this signaling pathway. For example, while humans have
ten, including the well-studied insulin hormone, the
nematode Caenorhabditis elegans has forty such peptides.
The similarity among these insulin-like peptides led to the
predominant notion that widespread redundancy occurs
among these peptides. Contrary to this notion, we find
that the forty insulin-like peptides in the nematode C.
elegans have specific and distinct effects on eight different
physiological outputs that range from development, stress
responses, lifespan and reproduction. Interestingly, we also
find that these peptides regulate each other at the
transcriptional level to form a signaling network. In
addition, we observe that this network is organized into
parallel circuits, whose activities are affected by compen-
sation, feedback and crosstalk. Finally, the organization of
the network helps to explain how different combinations
of peptides generate specific outputs and captures the
complexity of how these peptides orchestrate an animal’s
physiology through distinct peptide-to-peptide signaling
circuits.

Network Organization of Insulin-Like Peptides
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Dauer exit. We tested the ILP mutants for the ability to

modulate the rate of dauer exit in the daf-2(e1368) background,

which at 25uC, drives all animals into dauers that exit over

several days (Figure 1E, Table S2) [5,34]. Besides previously

identified ILPs [5,40], delayed dauer exit was observed in strains

with deletions in ins-11 (,11%), ins-12 (,36%), ins-15 (,11%)

and ins-18 (8%), and the ins-10 gain-of-function allele (16%).

Premature dauer exit was observed in strains with the ins-23

deletion (,16% less time in the dauer state). We observed

rescue of the dauer exit phenotypes for ins-12 and ins-15 (Table

S3).

Lifespan. We screened for lifespan phenotypes at 20uC,

except for ins-1 mutants that were only tested previously at 25uC
[5]. We identified ins-23(2) as a new ILP mutant with a high-

confidence long-lived phenotype (,12% increase) (Figure 1F,

Table S2) which was rescued by an ins-23(+) transgene (Table S3).

ins-6 mutants were reported to be slightly long-lived at 25uC [5];

our results indicate that ins-6 also increased lifespan by ,8% at

20uC. We found no mutation that reduced lifespan significantly.

Thermotolerance. Using an automated system that quanti-

fies motion [41], we measured the survival of ILP mutants at

34.5uC, a temperature that kills C. elegans. We found that ins-27

mutants showed the most significant increase in thermotolerance

(,17%); smaller increases were found in ins-23 (,13%) and ins-1

mutants (,4%) (Figure 1G, Table S2). We rescued the thermo-

tolerance phenotype of ins-27 (Table S3).

Pathogen resistance. We quantified survival on a clinical

isolate (PA14) of Pseudomonas aeruginosa [42] (Figure 1H, Table S2)

and found increased resistance to this pathogen at 25uC for ins-27

(,19%) and ins-31 (,17%) mutants, for which we also observed

rescue (Table S3). Conversely, ins-20 mutants were significantly

more susceptible to PA14 (,11%).

Reproductive longevity. By measuring the reproductive

period at 15uC (Figure 1I, Table S2), we found longer

Figure 1. Phenotypes of ILP mutants. (A) Heat map summarizing the confidence and direction of each phenotype for 35 ILP mutants (indicated
in the legend, bottom left). ‘‘P’’ labels previously published results that we analyzed together with this dataset [66]. Phenotypes were aligned to a tree
of the 40 C. elegans ILPs based on protein sequence similarity (left); structural class (Pierce et al., 2001) and chromosomal organization (right). (B–I)
indicate the magnitude of each phenotype compared to same-trial controls. (B) dauer entry; (C) dauer entry in the daf-2(e1368) background; (D)
dauer entry in the daf-28(sa191) background; (E) dauer exit in the daf-2(e1368) background; (F) lifespan; (G) thermotolerance; (H) pathogen
resistance; and (I) reproductive span. Bars in (B–I) were colored as indicated in the legend (bottom right). Y-axes in (B–D) indicate percentage of
dauers normalized to same trial controls. Y-axes in (E–I) indicate mean durations of dauer exit (E), lifespan (F), survival at 34.5uC (G), survival on PA14
(H), and reproductive span (I), normalized to same-trial controls.
doi:10.1371/journal.pgen.1004225.g001

Network Organization of Insulin-Like Peptides
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reproductive periods than wild-type controls for daf-28 (,26%),

ins-6 (,19%), ins-13 (,13%) and ins-31 (,21%) deletion mutants.

We rescued the reproductive longevity phenotype of the ins-31

deletion mutant (Table S3).

Some ILPs are organized into gene clusters, while others are

isolated [27]. Structurally, the ILPs are grouped based on the

predicted disulfide bond pattern (a, b, and c) or insulin-like repeats

unique to ins-31 [27]. We compared gene clustering and ILP

function against a phylogeny tree of all 40 ILPs based on protein

sequence and found that gene function and clustering did not

correlate with protein sequence similarity (Figure 1A). Further-

more, neither gene clustering nor structural classification strongly

predicts phenotype. Instead, our data suggest functional diver-

gence after local tandem duplication, which can occur rapidly,

such as in the ins-2 to ins-6 cluster where ins-6 and ins-3 had

opposite effects on dauer entry in the daf-28(sa191) background,

and ins-2 had no effect (Figure 1). We also did not detect any

significant correlation between expression and function when we

compared our patterns of ILP phenotypes with published spatial

and temporal patterns of ILP expression [31,43]. Thus, these

findings suggest that there is extensive regulatory and functional

diversification in the ILP system that results in unique sets of

functions for each ILP.

Previously, we and others have shown that certain ILPs could

execute regulatory roles that are either similar or opposite to daf-2

mutants [4,5,11,27,30,39,44–47]. This functional attribute extends

to other ILPs. We found that 17 ILP mutants have phenotypes

that largely resemble daf-2 mutants, and may act as agonists in this

pathway; while 4 ILP mutants (ins-1, ins-3, ins-13 and ins-20) have

phenotypes that are largely opposite to daf-2, and may act as

antagonists. Lastly, 3 ILP mutants (ins-12, ins-18 and ins-23) have

similar or opposite phenotypes to daf-2 in a process-dependent

manner (Figure 1A). This last result suggests that the roles of some

ILPs are context-dependent, which contributes to functional

specificities.

Different phenotypes can be decoupled, implying considerable

independence in their regulation. For example, the high-

confidence hits for dauer entry differ from those for dauer exit

(Figures 1A to 1E). The ILPs that regulate lifespan and pathogen

resistance also do not overlap (Figures 1A and 1F versus 1H), even

though increased immunity can contribute to the long life of daf-2

mutants [33,48]. We also observed decoupling of other processes,

e.g., lifespan versus thermotolerance (Figures 1A and 1F versus

1G), as well as dauer entry or exit versus pathogen resistance

(Figures 1A and 1B to 1E versus 1H).

Many of the ILPs with detectable phenotypes are pleiotropic,

indicating that they have diversified functions to coordinate

multiple processes. The ILPs with high-confidence phenotypes in 2

or more processes (treating all 3 dauer entry screens as one

process) constitute 52% (12/23), which become 81% (25/31) if

low-confidence phenotypes are included. Pleiotropy allows one

gene to coordinate multiple processes, but sacrifices specificity and

independent regulation. To examine how these trade-offs and

constraints are manifested in the ILP system, we quantified the

extent to which the relationships between ILPs and their

phenotypes are compartmentalized (modular) or intermeshed

(non-modular) based on a measure of modularity from 1 to 0

[49]. A value of 1 indicates a perfectly modular system, where

distinct sets of ILPs function without cross-regulation among

modules. The modularity value of the ILP-to-phenotype map is

0.42, indicating that the ILP system is partly modular, constituting

a compromise between independent regulation and coordination.

Together, these findings reveal the operational rules of a

combinatorial code that links ILPs to phenotypes. Despite its

prominence, redundancy is not a universal feature of the entire

ILP system; instead, the ILPs are characterized by substantial

functional specificity and diversity, providing mechanisms through

which functional complexities arise in gene families.

C. elegans ILPs Are Organized in a Gene Expression
Network

ILP-to-ILP signaling regulates several physiological processes

[4,24,30]. To investigate its global nature, we used quantitative

real-time PCR (qPCR) to identify changes in the mRNA levels of

all 40 ILPs in each of 35 ILP mutants (Figure 2A, S2, and Table

S5). Surprisingly, we found that ILP-to-ILP signaling extends to

many members of this family, demonstrating the presence of an

ILP-to-ILP regulatory network (Figure 2A). Out of a possible

1190, we observed only 101 ILP interactions (Figure 2A), which

suggests that the inter-ILP regulation is sparse. These regulatory

relationships also appear specific and diverse: each ILP is wired to

a unique combination of regulators and targets, and regulation

could be either negative (52%) or positive (48%) in a target-specific

manner. These relationships showed an intermediate modularity

of 0.49, reflecting a mix of cross-regulation and compartmental-

ization in ILP gene expression. Thus, like the phenotypic screens,

the qPCR data show that the diversification of C. elegans ILPs

beyond functional redundancy also extends to their gene

expression.

For comparison, we also analyzed the changes in expression of

all 40 ILPs in mutants that impair the ILP signaling pathway,

using daf-2(e1368) (a reduction-of-function allele), and daf-

16(mu86) (a null allele) [18,34]. Many ILPs were up-regulated in

the daf-2(e1368) background, suggesting compensation. Many of

the ILPs that were regulated by other ILPs were also affected in

the daf-2(e1368) and daf-16(mu86) backgrounds, suggesting that

these changes were mediated through the canonical ILP signaling

pathway. In general, daf-2(e1368) and daf-16(mu86) tend to cause

larger effects on gene expression, suggesting that they might be

closer to the upper limit of the gene expression changes, as might

be expected if the central pathway for ILP signalling is disrupted.

Some ILPs that were regulated by other ILPs were not affected by

daf-2(e1368) or daf-16(mu86); this difference could be due to

residual signaling activity retained in daf-2(e1368) [34] or the use

of alternative pathways for inter-ILP regulation.

To understand inter-ILP communication, we built a network

based on these qPCR results for graph theory analysis, treating

each ILP as a node and each regulatory interaction as an edge

(Figure 2B). In this network, the edges are directed (reflecting the

regulation of one ILP by another) and signed (indicating positive

or negative regulation) to represent the flow of information.

We discovered three major properties of this network. First, the

ILP network had ‘‘small world’’ properties defined by two key

parameters: the characteristic path length that measures the

average minimal number of edges between all possible pairs of

ILPs, and the clustering coefficient that measures the density of

local interconnections [50,51]. Compared with random networks

with the same number of edges and nodes, the ILP network has a

short path length, 3.17, and a high clustering coefficient, 0.13

(Figures S3A to S3C). Respectively, these properties might suggest

that within these genetic circuits, signals can be communicated

relatively efficiently from one ILP to another because they are

separated by very few intervening ILPs, and that information is

processed by local genetic circuits. These are consistent with the

parallel processing we observed in the dauer entry sub-network,

which is discussed below.

Second, the ILP expression network displayed hierarchical

regulation. Plotting the number of regulators (in-degree) versus the

Network Organization of Insulin-Like Peptides
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number of targets (out-degree) of each ILP (Figure 2C) reveals a

regulatory hierarchy where several ILPs had an exceptionally high

number of regulators or targets. This organizational feature

suggests different functional attributes for the ILPs. ILPs with few

inputs and many outputs are putative upstream regulators; ILPs

with similar numbers of inputs and outputs likely act in relays or

processing circuits; and ILPs with many inputs and few outputs

could serve as downstream integrators or effectors.

Third, important nodes for network communication tend to

affect more processes. We calculated the betweenness centrality

for each ILP, which measures its importance as a link between

other ILP pairs in the network (Figure 2D) [52]. ILPs with

higher betweenness centrality were more likely to be pleiotropic

(Figures 2D to 2E), similar to protein-interaction networks

where proteins with high betweenness centrality tend to be

essential [52]. Thus, ILPs with high betweenness centrality may

Figure 2. The ILP regulatory network. (A) Heat map summarizing the significance and direction of expression changes for all ILP mRNAs in 36 ILP
mutants represented by negative log of the p-values. Significant differences (q,0.05) and transcripts with low expression were colored as indicated
in the legend; more significant changes are more darkly shaded. Transcripts corresponding to deleted ILPs were excluded because these changes
were not due to regulation (see Table S5 for mRNA changes). (B) Gene expression network based on a spring-embedded layout. Node sizes reflect
the magnitude of betweenness centrality. Green and violet lines indicate excitatory and inhibitory connections, respectively. (C) A scatter plot of
inputs versus outputs for each ILP. Pleiotropy signifies the percentage of phenotypes affected by each ILP; dauer entry phenotypes were aggregated
for this purpose (see Materials and Methods and Figure 1). Dashed lines indicate the median for each axis. (D) Rank order of the ILPs for betweenness
centrality. (E) Scatter plot showing linear correlation of betweenness centrality with pleiotropy.
doi:10.1371/journal.pgen.1004225.g002

Network Organization of Insulin-Like Peptides
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act as bottlenecks during information flux in a wider range of

processes.

Our network analysis was robust to missing edges, such as those

from subtle gene expression changes that did not rise to statistical

significance. The top ranked ILPs for each network parameter

were similar despite the addition or removal of 25% of random

edges (Figures S3H to S3K), indicating that we have sampled the

network sufficiently.

To relate ILP function to network organization, we mapped the

high-confidence ILPs identified in each screen onto the network,

which provided three global observations. First, the ILPs with

phenotypes were spread over the network (Figure 3A), suggesting

that signaling across many parts of the network was important for

its overall function. Second, the ILPs with more specific

phenotypes from the non-sensitized screens were segregated into

different locations (Figures 3B to 3F and 3J), consistent with the

observations that gene expression defects in these ILP mutants do

not propagate over the entire network (Figure 2A). The separation

of critical nodes in the network could limit the number of

physiological defects when one ILP is perturbed. Third, our

sensitized screens for dauer entry revealed another functional level

of non-critical ILPs distributed over much of the network

(Figures 3F to 3I). This suggests distributed processing, which

could reduce the severity of a phenotype by providing alternate

routes of communication. Together, these mechanisms contribute

to functional specificity, which is an aspect of the ILP combina-

torial code.

Diverse Genetic Interaction Profiles among ILPs
To address how ILPs combinatorially regulate a specific

process, we analyzed genetic interactions among deletion muta-

tions of ILPs involved in dauer entry. We tested 56 double mutant

combinations by selecting a diverse subset of 13 ILPs identified

from each of the three dauer entry screens, encompassing ILPs

showing high and low penetrance (Figures 1B to 1D). To classify

genetic interactions, we first determined how the fraction of dauer

entry in the double mutant differed from the expected fraction in

an additive model based on the single mutant phenotypes

Figure 3. Functional maps of the ILP network. Phenotypes of the ILPs were mapped onto a spring-embedded layout of the ILP network;
directions of phenotypes are indicated in the legend (bottom right). (A) shows the network where ILPs with phenotypes are highlighted based on
their phenotypic direction compared to daf-2 mutants. ILPs with both similar and opposite phenotypes to daf-2 are indicated with a split circle. (B–J)
shows the network highlighted for phenotypes as indicated.
doi:10.1371/journal.pgen.1004225.g003

Network Organization of Insulin-Like Peptides
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(Materials and Methods). We then subdivided the interactions

based on whether the corresponding single mutants had the same

or opposite phenotypes (Figure 4, Table S6). This analysis revealed

a level of diversity in gene interactions not predicted by simple

redundancy.

Diverse genetic interactions (defined in Figure 4) were observed

in 47% (26/56) of the double mutants, of which 38% (10/26) were

additive or synergistic. This result indicates that while the choice

between dauer arrest and reproductive growth is binary, the

likelihood of a given choice is specified by a graded combination of

ILP activities. Strikingly, 9 of these 10 additive or synergistic

interactions were seen in double mutants with null mutations in

either ins-35 or daf-28, suggesting that these ILPs are important

genetic hubs in dauer entry, consistent with their strong dauer

entry phenotypes. The remaining 53% (30/56) of the double

mutants showed no effect or no interaction (Figure 4, Table S6),

Figure 4. Genetic interactions between ILPs. (A) Double mutant analysis for dauer entry. Bars represent the phenotypes of single and double
mutants (legend at bottom right); the class of genetic interaction is colored in the bar for the double mutant. (*) and ({) indicate significant difference
with the column and row mutant, respectively (p,0.05, hypergeometric test). (B) Heat map and a pie chart summarizing the different genetic
interactions based on dauer entry phenotypes of single and double mutants. Percentages in the pie chart do not add up to 100% due to rounding
errors.
doi:10.1371/journal.pgen.1004225.g004
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Figure 5. Information flow in the dauer entry sub-network. (A) shows the putative organizational structure of the dauer entry sub-network
comprised of dauer entry-regulating ILPs compared to their genetic interactions (B, C). Genetic interactions classified as additive or synergistic (B); or
non-additive, suppression or non-synergistic (C). (D) Shows the ratio of dauer formation of the triple mutant ins-33; daf-28 ins-35 compared to double
or single mutant strains. ins-33; daf-28 and ins-33; daf-28 ins-35 mutants are significantly more likely to enter dauer than all other strains (p,0.001,
Hypergeometric test).
doi:10.1371/journal.pgen.1004225.g005
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indicating that ILPs are not promiscuous in their interactions

during dauer entry, even with other ILPs involved in the same

process. These results reveal how signals from pairs of ILPs are

integrated to regulate dauer entry. Our findings also demonstrate

functional differences among ILPs that regulate dauer entry, and

indicate that the effect of an ILP depends on genetic background.

Information Processing in the Dauer Entry Sub-network
Information processing is strongly influenced by the signaling

motifs within the network and the overall network architecture

[53]. While regulatory interactions serve as a roadmap for

information flow among ILPs, genetic interactions between ILPs

reflect how their activities are integrated to generate a physiolog-

ical outcome. To assess information flow and processing, we

combined regulatory and functional data for the ILPs whose

genetic interactions were extensively defined for the dauer entry

phenotype (Figure 5).

The connectivity and synergistic or additive genetic interactions

indicate parallel signaling in the dauer entry sub-network

(Figures 5A to 5B). The major signals that inhibit dauer entry

come from three main branches (daf-28, ins-6/ins-33 and ins-6/ins-

35), because mutants in these branches have the strongest

phenotypes (Figure 1C). To generate graded probabilities of dauer

entry, signals from these three branches are integrated in an

additive or synergistic manner based on their genetic interactions

(Figures 4 and 5B). This network organization was supported by

the phenotypes observed when we disrupted the daf-28, ins-6/ins-

33 and ins-6/ins-35 branches using combinations of null muta-

tions. In the ins-33 and daf-28 double deletion mutant, we

observed a strong synergistic response with a high proportion of

dauers even at 25uC (Figure 5D, Table S7). Strikingly, in the ins-

33; daf-28; ins-35 triple deletion mutant, up to 80% dauers were

observed at 25uC (Figure 5D, Table S7), which is nearly

comparable to daf-2 mutants. These results reinforce the idea that

the daf-28, ins-6/ins-33 and ins-6/ins-35 branches are major

pathways for regulating dauer entry.

The different connectivities within each branch of the ILP

network suggest that they use different information processing

strategies (Figure 5). In the daf-28 branch, daf-28 inhibits ins-26,

which likely serves as a compensatory regulation based on their

synergistic interaction (Figures 4 and 5B). The effect of this

compensation is likely to be regulation of ins-5 as both daf-28 and

ins-26 inhibit ins-5. In contrast, the ins-6 branches have a

bifurcated topology where ins-33 and ins-35 process inputs from

ins-6. A non-additive interaction was observed between ins-6 and

ins-35, as well as between ins-6 and ins-7, which is downstream of

ins-35 (Figures 4 and 5C); while an additive interaction between

ins-6 and ins-33 indicates compensation (Figures 4 and 5B; see

below). At a downstream level, non-additive or non-synergistic

interactions occur within the ins-33 or ins-35 branches, but not the

daf-28 branch. Crosstalk occurs between the daf-28 and ins-6

branches (Figure 5A), which may coordinate their signaling

activities.

ins-3 is likely to act as a negative modulator providing feedback

to the dauer entry sub-network at multiple levels; such circuits are

associated with noise reduction and homeostasis. Unlike most

ILPs, the ins-3 mutation decreased dauer entry in several

backgrounds (Figures 1D and 4). ins-3 expression was activated

by ins-6; while ins-3 in turn inhibited ins-6 expression, as well as

other ILPs in the daf-28 branch (Figures 2A and 5A).

While both ins-14 and ins-17 show high and low-confidence

dauer entry phenotypes, respectively, they are likely to act

separately as modulators in the main dauer entry sub-network

(Figure 5) for two reasons. First, they are not directly connected to

the ins-6 and daf-28 branches of the expression network (Figures 5A

to 5C). Second, they have weaker interactions with the genes in the

daf-28 and ins-6 branches (Figure 4A). One exception is an additive

interaction between ins-35 and ins-14 (Figures 4 and 5B), which

might represent cross-talk at the downstream level.

A Regulatory Mechanism for Phenotypic Specificity
ILPs could also exert either strong or weak effects (Figure 1). For

example, although ins-6 and daf-28 both regulate dauer entry and

exit, ins-6 null mutations had a stronger effect on dauer exit,

whereas daf-28 null mutations had a stronger effect on dauer entry

[5]. Our results reveal that this feature is common in the whole

ILP system (Figure 1). These specificities are not due to some ILPs

being generally strong signals, while others are generally weak,

because the relative effects of the ILPs can be reversed depending

on the phenotypes.

Our integrated analysis provided a mechanistic explanation for

the phenotypic specificity of daf-28 and ins-6 (Figure 1C) during

dauer entry. Loss of daf-28 is compensated by ins-26, because ins-

26 was up-regulated in daf-28 mutants (Figures 2A and 5A) and

because ins-26; daf-28 double mutants have a more severe

phenotype than either single mutant (Figures 4 and 5B). However,

ins-26 is a weak compensator, as indicated by its weak phenotype

(Figure 1C). Additionally, daf-28 mutants up-regulate ins-5

(Figures 2A and 5A), an ILP that can promote dauer entry

(Figures 1 and 4). As opposed to compensation, increased ins-5

expression contributes to the mutant phenotype of daf-28, because

removing ins-5 suppressed the daf-28 mutation (Figures 4 and 5C).

These two targets of daf-28 therefore contribute to its strong dauer

entry phenotype.

In contrast, ins-6 is compensated by daf-28 and ins-33, because

both daf-28 and ins-33 were up-regulated in ins-6 mutants

(Figures 2A and 5A), and both ins-6; daf-28 and ins-33; ins-6

double mutants had a more severe phenotype than the respective

single mutants (Figures 4 and 5B). Both daf-28 and ins-33 were

strong compensators, as indicated by their strong phenotypes

(Figure 1C). Thus, the weak ins-6 phenotype could be explained by

compensation from two strong regulators.

Together, these results show that connectivity within the ILP

network serves as an important determinant of functional

differences among ILPs.

Discussion

Most animals, including humans, encode multiple ILPs in their

genomes, which regulate multiple processes

[4,5,14,15,23,24,26,27,54–58]. However, the biological function

of large ILP ensembles remains an open question. Our systematic

analysis of C. elegans ILPs revealed that they are organized into an

ILP-to-ILP network that provides several regulatory mechanisms

for graded signaling, functional diversity, robustness to gene

perturbation and information flow. In turn, these functional

properties of the ILP network generate aspects of a combinatorial

code that links ILPs to developmental and physiological outputs.

Thus, our findings challenge the notion that broad redundancy is

the central feature of the C. elegans ILP family.

Large gene families are often proposed to employ a combination

of redundancy and diversity to regulate biological processes [59].

Here, we reveal the specific implementation of an ILP combina-

torial code that coordinates aspects of development and physiology

(Figure 1A). Different ILPs generally affect different combinations

of processes, which support the idea that redundancy is not

evolutionarily stable unless the genes have additional functions

[59,60]. The high-confidence phenotypes indicate that many
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single ILPs can significantly contribute to different phenotypic

outputs. This combinatorial coding of phenotypes therefore argue

against simple redundant mapping between ILPs and their outputs,

but show that the complexity of these gene-phenotype relationships

is generated at least in part by inter-ILP communication.

The intermediate modularity of the ILP phenotypes raises the

possibility that multiple ILP signaling centers exist in the animal,

which could provide differential contributions to different

processes. In addition to the regulatory connectivity that underlies

phenotypic specificity, spatial specificity in ILP signaling could also

be a complementary mechanism in achieving the specific patterns

of ILP phenotypes. This model will need to be tested in the future

by tissue- or cell-specific rescue of the ILPs, coupled with the

elucidation of their downstream target tissues where the DAF-2

ILP receptor acts.

Undirected networks have been recently used to group the

C. elegans ILPs based on similarities in their expression patterns

[31]. Here we show that the C. elegans ILPs are organized at the

level of ILP-to-ILP regulation in a directed regulatory network,

where signals in different branches are processed differently and

modulated by cross-talk. This is exemplified in the different

connectivities between the ins-6 and daf-28 branches of the dauer

entry subnetwork, whose distinct signals are ultimately integrated

to set the probability of dauer entry. This network organization

thus contributes to the graded nature of the ILP combinatorial

code. This property generates different probabilities of dauer entry

that result in different fractions of developmentally arrested dauers

versus reproductive adults within a population. Dauers can survive

environmental insults that kill reproductive adults and can thus

serve as a hedge at the cost of delayed reproduction. Therefore,

the advantage of this graded response provided by the parallel

circuit organization is the ability to optimize the trade-off between

fast reproduction versus survival in response to variable environ-

ments.

These findings further underscore how circuit organization in a

network contributes to the phenotypic outputs of a multi-gene

family. Compensation and distributed, parallel processing in the

ILP network provide robustness against gene or network

perturbation. Robustness in preventing dauer entry allows for

rapid reproduction, ensuring that animals develop as dauers only

in extreme conditions, such as when the environment impinges on

more than one ILP.

In addition, the connectivity of the ILP network show that

specific compensatory circuits are organized to generate strong

and weak regulators, an important component of the combina-

torial code. Extensive genome-wide studies in yeast indicate that

complete or partial functional redundancy can occur among

duplicated gene pairs [61,62] where the loss of one gene can be

compensated by responsive circuits that increase the expression of

a second homologous gene [63]. Although compensatory circuits

are often hypothesized as a feature of gene families that lead to

redundancy, we show that its actual implementation can lead to

more complex outcomes than previously proposed. Instead of

global redundancy, the gradation provided by the ILP network is

consistent with the idea that partial redundancy, as well as

overlapping and distinct functions, could serve to encode diverse

inputs [59,60].

ILP-to-ILP signaling in diverse animals uses similar signaling

motifs, such as feedback, compensatory inhibition and feedforward

circuitry [4,24,28–30,64,65], which may provide similar biological

functions despite component differences [53]. Our findings suggest

how simple circuits can be organized to generate complex network

functions; like signaling motifs, these principles may also apply to

networks in general. Because our results indicate the importance of

specificity versus redundancy in multi-gene families is a conse-

quence of network organization, we propose that large-scale

connectivity-based approaches have general utility in dissecting

the regulatory mechanisms employed by different families of

intercellular signals in different animals.

In summary, we have delineated the C. elegans ILP-to-ILP

regulatory network based on functional criteria, which provides a

distinct approach to existing ILP networks based on expression

similarities [31]. This ILP-to-ILP regulatory network, coupled with

our systematic genetic analyses, serves as a mechanistic framework

for understanding information processing by ILPs. Our findings

suggest that the multiple ILPs provide the ability to organize

circuits into a network with diverse points of regulation, which in

turn produces an intricate combinatorial code to orchestrate

development and physiology. Together, this represents a new

avenue to understand how hormonal systems compute the

development and physiology of the organism.

Materials and Methods

C. elegans Strains and Culture
C. elegans were cultivated at 20uC under standard conditions

except where otherwise stated. The strains used are listed in Table

S1. All ILP deletions were independently confirmed using PCR

from genomic DNA with primers different from those used by the

C. elegans Knockout Consortium to isolate the mutation. ins-

10(tm3498) had increased expression of the coding region from our

qPCR experiments (below). PCR using genomic DNA from 66
outcrossed ins-10(tm3498) mutants with primers that annealed to

the start and end of the ins-10 coding sequence amplified a

genomic fragment that contained the full ins-10 coding sequence

which was verified by sequencing (data not shown). Because ins-

10(tm3498) also contained a deletion in the endogenous ins-10

locus, which we verified independently from the C. elegans

Knockout Consortium, these results indicate that ins-10(tm3498)

involves at least a deletion and duplication of the ins-10 coding

region that led to ins-10 overexpression.

All mutant strains used in this study were obtained from the

Knockout Consortium [66]. Double and triple mutants were

generated by standard genetic methods. See Table S1 for strain

list. Deletions were regularly verified using PCR.

Phenotypic Analysis
All the phenotypic assays were conducted on fresh NGM plates

seeded with fresh OP50 unless specified otherwise, using animals

that were well fed for at least 2 generations. The lifespan and

dauer assays were replicated in different labs. The identity of each

strain was blinded for most assays.

Lifespan. Life spans were performed at 20uC as previously

described [67]. No RNAi or drug treatments were used during the

assay.

Dauer entry and exit. Dauer entry and exit assays were also

performed with minor modifications to previous descriptions [5].

For dauer entry assays, worms were allowed to lay eggs at 20uC for

4 hours; 50 eggs were distributed per plate, incubated at the

temperature specific for each experiment and scored 48 hours

later. For dauer exit assays, dauers induced by the daf-2(e1368)

mutation at 25uC were distributed at 25–50 per plate, kept at 25uC
and scored at 12 hour intervals for 10 days.

Pathogen resistance. Pathogen resistance was tested using

the slow killing kinetics assay that is similar to one described

previously [42]. Briefly, ,5 ml overnight Luria Broth culture of the

Pseudomonas aeruginosa clinical isolate strain PA14 was spread on an

NGM plate to make a lawn of ,5 cm2 and the inoculated plate
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was incubated at 37uC for 24 hours before use. Subsequently, 20

L4-stage hermaphrodites were transferred onto each PA14-plate.

The plates were kept at 25uC and scored for live worms every 8–

9 hours. Live worms were transferred to a freshly prepared PA14-

plate on every other day to prevent progeny contamination. We

did not use any pharmacological reagents or RNAi treatment

during the slow killing assays.

Reproductive spans. Reproductive spans were performed as

previously described [68], except that they were performed at

15uC, and progeny checks were done three days after removing

the mother.

Thermotolerance. Automated survival assays were conduct-

ed using the C. elegans lifespan machine [41]. Wild-type and

mutant eggs were collected via hypochlorite treatment of adults

grown at 20uC, and placed at 20uC on NGM-agar plates seeded

with OP50. Late-L4 larvae (approximately 48 hours post bleach)

were transferred onto fresh plates containing 13.3 mg/mL 5-

fluoro-29-deoxyuridine (FUDR, Sigma). Day 3 adults (approxi-

mately 72 hours post late L4) were transferred onto fresh plates

(NGM-agar without CaCl2, to ensure clarity of agar) at a density

of 35 worms per plate. These plates were placed onto modified

flatbed scanners calibrated to operate at 34.5uC. Death times were

automatically detected by the lifespan machine’s image-analysis

pipeline [41], and survival distributions were validated through

visual inspection of representative subsets of collected image data.

Rescue experiments were conducted manually, where worms were

pre-treated as above and the Day 3 adults were transferred onto

fresh NGM-agar plates at a density of 10 animals per plate. These

plates were then shifted to 34.5uC and assayed for survival every

hour, until all animals have died.

Dauer entry for double mutants. Dauer entry phenotypes

were assayed at 27uC, except for experiments involving daf-28

mutants. daf-28(tm2308) mutants have near saturating rates (,80–

90%) of dauer entry at 27uC, precluding accurate estimates of

potential additional effects in double mutants; for a greater

dynamic range, strains with daf-28(tm2308) were tested at 26.5uC.

We note that some mutants showed variable effects on certain

phenotypes (Figure S1). In particular, ins-35 and ins-38 showed

significant changes in dauer exit rates, but were highly variable

either between trials or between labs. Perhaps these mutants are

particularly sensitive to environmental variables that cannot be

easily controlled, or they increase phenotypic variability rather

than simply regulating a specific phenotype.

Rescue experiments. With the exception of ins-12, where

we used a stable integrant, we tested for rescue of the respective

phenotypes by comparing animals harboring an extrachromo-

somal array containing genomic regions of the gene of interest

with siblings lacking the array. Lines bearing or lacking the array

were selected by the presence or absence of the ofm-1::gfp marker

[5]. For some ILPs, not all transgenic lines showed rescue in all

trials; this might be due to variability in gene expression, gene

silencing, gene dosage or mosaicism from extrachromosomal

arrays. A control strain containing only the ofm-1::gfp co-injection

marker did not show any effects on lifespan, thermotolerance or

dauer entry (data not shown).

Molecular Biology and Generation of Transgenic Lines
We generated plasmids to rescue the phenotypes of the ILP

mutants. These plasmids contain the entire coding region of the

gene of interest and the 59 and 39 intergenic regions up to the next

open reading frame. Genomic regions for ins-3, ins-4, ins-5, ins-14,

ins-15, ins-21, ins-23, ins-26, and ins-27 were subcloned using a

recombineering method [69] from the corresponding fosmids into

the pQL60, a vector derived from the original pPUB in which the

unc-119 marker was removed. Genomic regions for ins-31, ins-33

and ins-35 were amplified by PCR and subcloned into pCR-Blunt

TOPO (Invitrogen). The transgenic lines bearing extrachromo-

somal arrays were generated by microinjection of the rescue

construct at different concentrations (see Table S1) as well as ofm-

1::gfp as a coinjection marker (25 ng/ml) and pBluescript as a

carrier DNA up to a final concentration of 100 ng/ml of DNA.

For ins-12, a mini-gene was synthesized, subcloned into the

MosSCI plasmid pCFJ352 [70] with the corresponding the 59 and

39 intergenic regions up to the next open reading frame and

integrated into the QL35 strain using MosSCI [71].

Statistical Analysis
Phenotypic analysis. The log rank test based on right

censoring was used to identify significant differences in survival

functions for lifespan, dauer exit, thermotolerance, and reproduc-

tive span between control and experimental strains. The log rank

test based on intervals censoring was used to determine significant

changes in pathogen resistance. The hypergeometric test was used

to determine significant changes in the various dauer entry assays.

Depending on the statistical test, we considered three possible

criteria for classifying the screening results: (1) considering all trials

for a given mutant, the p-value determined by summing the chi-

square statistics (for log-rank tests) or a linear model (for

hypergeometric tests) was less than 0.01 for the corresponding

degree of freedom ( = number of trials); (2) if the mutant was tested

in two labs, it had to be significant (p,0.05) in the majority of

trials in both labs; and (3) if the mutant was tested in one lab, it had

to be significant (p,0.05) in the majority of trials and be significant

in at least in 2 trials. A high confidence hit was assigned if all three

criteria were met; otherwise, a low confidence hit was assigned if

criteria (1) was met. A variable hit was assigned when significant

trials were observed in both directions (Figure S1). Statistical tests

and classification of high and low confidence hits were

implemented in R. Heat maps were visualized using Javatree.

Correlation analysis between expression and phenotypic patterns

were performed in R.

qPCR analysis. Data were normalized against the geometric

mean of the two most stable reference genes identified by geNorm,

pmp-3 and Y45F10D.4. The statistical significance of differences in

ILP mRNA levels between wild type and each mutant (3–4

replicates each) were determined with p-values obtained from a

linear model and corrected for multiple hypothesis testing using a

q-value (false discovery rate) threshold of 0.05 for this dataset [72].

Six ILP mRNAs were expressed at low or undetectable levels and

not analyzed further. We used custom scripts in Igor Pro 6 and the

qvalue package in R (http://www.r-project.org/). We tested 2

alleles of ins-7; although we report all interactions in Figure 2, only

the interaction common to both alleles were considered in our

subsequent analysis.

Double mutant analysis. To estimate the probability of

dauer entry of a double mutant (Pxy), using the measured

probability of the dauer entry in each single mutant (Px and Py)

if the two mutations acted independently, we used the equation:

Pxy~PxzPy{(Px � Py). Using Pxy, we calculated the number

of dauers and non-dauers expected, if we had scored the same

number of animals as we did for the double mutant. We next

determined if the actual number of dauers and non-dauers

significantly deviated from expectation (hypergeometric test, p,

0.05) on a trial by trial basis. The majority outcome in multiple

trials was used to classify each double mutant into 3 groups:

significantly higher than expected, within expectation if there was

no interaction, or significantly lower than expected. The

interactions that were higher than expected were classified as
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synergistic. The remaining 2 groups were further subdivided based

on the differences between wild type versus single mutants, wild

type versus the double mutant, and each single mutant versus the

double mutant, using essentially the same statistical analysis

performed for the phenotypic analysis of the single ILP mutants;

differences were deemed significant when at least half of the trials

showed p,0.05 (hypergeometric test). After ruling out cases where

there were no genetic interactions or no phenotypes, the

interactions that were not higher than expected were subdivided

into three classes. The first class consisted of cases where the two

single mutants have opposing effects on dauer entry across the

dataset. ins-3 and ins-5 tended to reduce dauer entry frequencies

and this class largely consisted of double mutants containing either

of these mutations. Examining this class revealed whether ins-3 or

ins-5 could suppress the increased dauer phenotypes found in the

other mutant. The second class consisted of cases where both

single mutants led to increased dauer entry rates. Examining this

class indicated whether the increased dauer rates were additive or

not. The third class consisted of the ins-12; ins-35 double, which

was significantly different from ins-12 and not ins-35, but was not

significantly different from expected if the interactions were

additive. Because these results made it difficult to unambiguously

classify the interaction as additive or non-additive, we classified it

conservatively as non-synergistic.

qPCR and Network Analysis
Sample preparation. Synchronized L4s (between 160–200

individuals) were picked, aged to adulthood and transferred to

OP50-seeded 14 cm plates, where they were allowed to lay eggs at

20uC for 4 hours and removed from the plate afterwards. Plates

were incubated at 20uC for 52 hours, until the animals reached

the L4 stage. Worms were then washed away with ice-cold M9,

collected into Falcon tubes and centrifuged for 2 minutes at 400

RCF and 4uC. Worms were then washed 3 times with ice-cold M9

to remove all traces of bacteria. Worms were then transferred to

RNAse-free Eppendorf tubes and resuspended in 50 ml of

RNAlater RNA stabilization solution (Qiagen). The worms were

stored at 280uC till further use.

RNA extraction. Before proceeding with the RNA extrac-

tion, the RNAlater was removed by centrifugation at maximum

speed for 10 min at 4uC. RTL (250 ml, RNeasy Mini Kit, Qiagen)

and 250 mg of glass beads were added to the samples. The worms

were lysed using a TissueLyzer (Qiagen) at 20 Hz for 2 min and

the procedure was repeated for 1 min. Samples were kept in ice

whenever possible. After centrifugation of the lysed samples, the

supernatants were transferred to a new RNAse-free Eppendorf

tube and 1 volume of 70% ethanol was added. The procedure was

then continued as described by the manufacturer (RNeasy Mini

HandBook, Qiagen). The subsequent experimental steps for the

qPCR analysis were performed by qStandard (UK).

RNA and assay quality controls. RNA integrity was

assessed using an Agilent Bioanalyzer and samples with RIN,

1.8 were rejected. RNA concentration and purity were determined

using a NanoDrop spectrophotometer. Samples were used only if

peak absorbance occurred at 260 nm, A260/280.2.0, A260/

230.1.0, and RNA concentration was at least 200 ng/ml. Two

micrograms of RNA were reverse transcribed using a Quantitect

reverse transcription kit (QIAGEN UK) in a 20 ml reaction

volume and included a gDNA wipeout step, with 10% of reactions

performed in duplicate. Complementary cDNAs were diluted 10-

fold with yeast tRNA (5 ug/ml); 2 ml of this was used for each

qPCR reaction. Assays were designed by qStandard and tested for

specificity by running products amplified from cDNA on a 2%

agarose gel. Primers (Table S2) were free from known SNP sites

and both primers and amplicon sequences were analysed using M-

Fold software to avoid potential secondary structure. A standard of

known copy number, calculated using the specific extinction

coefficient for each amplicon, was generated for each assay from

purified PCR products; only assays that exhibited sensitivity to 10

copies/reaction, linearity over 7 log and efficiency $95% were used.

qPCR. Two microlitres of cDNA were amplified in a 10 ml

reaction using Quantifast SYBR green master mix (Qiagen) with

each primer at a final concentration of 500 nmol/l. Control

reverse transcription-negative reactions were run with primers for

an intron-flanking assay, capable of detecting gDNA (ins-2) and the

completed reactions were run on a 2% agarose gel. No significant

gDNA contamination was observed, indicating effective gDNA

removal at reverse transcription. For all assays, template controls

and DNA standards (101–107 copies/reaction) were included in

each run. Amplification parameters were 95uC for 5 min followed

by 40 cycles of 95uC for 10 sec, 57uC for 20 sec and 72uC for

10 sec, using a Rotor-Gene 6000 (Corbertt). Melt curves were

checked for product specificity (single peak) and the presence of

primer dimers. Primers were designed based on sequences

obtained from www.wormbase.org and the primers sequences

can be found in Table S4. Copy numbers per reaction were

derived from the standard curves using the Rotor-Gene software.

Network construction. For network construction we con-

sidered only experiments where mRNA levels were robustly

detected and interactions with q-value smaller than 0.05. The sign

was determined by whether the target mRNA was upregulated or

downregulated by the normal function of the ILP. We thus built a

directed network based on significant changes in each gene’s

expression in each mutant. This regulatory network represents the

gene expression interactions among 37 ILPs, as 3 ILPs (ins-17, 32

and 36) showed no connections.

Small worldness. To calculate the small world coefficient of

the network, we used the small world measure described in [73].

We calculated network small worldness using both clustering

coefficient and transitivity, and obtained very similar small-world

values (Figure S3A–C). To generate the random networks for the

bootstrapping calculation and for calculating betweenness central-

ity, clustering coefficient and closeness centrality, we used pre-

existing algorithms implemented in NetworkX [74].

Robustness analysis. To identify genes in key positions in

the network, we ranked all the nodes in the network according to

the following network measures: degree, betweenness centrality,

closeness centrality and clustering coefficient. We then verified the

robustness of this ranking by adding noise to the network in the

form of addition or removal of extra edges, and re-calculating the

ranking of every node after each iteration (Figure S3H–K) [75].

All network measures were calculated using NetworkX [74].

Visualization and phenotypic relationships. Networks

were visualized using Cytoscape, including layouts, and displays of

node and edge properties. Linear correlations were calculated in

Igor Pro 6. Besides betweenness centrality (Figure 2D), we did not

detect significant correlations between phenotype and network

parameters, such as closeness centrality (which measures how many

edges separate an ILP from all the other ILPs in the network), or

between phenotype and clustering coefficient (which measures the

amount of local interconnections), suggesting that these parameters

are less crucial to ILP function (Figures S3D to S3G).

Modularity Analysis
Modularity of the ILP-to-phenotype and the mRNA-to-ILP

matrices were estimated by rearranging the rows and columns of

the matrix to find highly interconnected groups and then assessing

matrix-wide the ratio of the number of inside to outside group
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connections. We used the adaptive BRIM (Bipartite Recursively

Induced Modules) algorithm [49,76], which is a heuristic method,

implemented in MATLAB [49,76] to maximize a bipartite

modularity value Q. This Q value is dependent on modularity of

the matrix; by definition, a perfectly modular matrix is comprised of

clusters of completely isolated groups (Q&1), and modularity

declines as the number of cross-group connections increases

(0ƒQƒ1). Because the modularity calculation is based on a

stochastic algorithm that produced different matrix arrangement

each time the algorithm is run, we performed the calculation 30 times

and took the average of the modularity. The average modularity

value of ILP-to-phenotype matrix is 0:424+0:000 (highly reproduc-

ible) and that of mRNA-to-ILP is 0:490+0:002: To evaluate the

statistical significance of the modularity, we utilized two null models.

The first model is a Bernoulli random null model in which the null

matrix has the same total number of interactions as the original

matrix, albeit randomly positioned. The second is a probabilistic

degree null model in which each interaction in null model is assigned

a probability. The ILP-to-phenotype and mRNA-to-ILP matrices are

significantly different against the Bernoulli random null model (p,

0.001 in both cases); however, when compared against the

probabilistic degree null model, which is a stronger statistical test,

the p-values of both matrices are greater than 0.05. These results

suggest that both matrices are weakly modular.

Supporting Information

Figure S1 Trial to trial variation in ILP phenotypes. The bar

graphs indicate the mean magnitude of each phenotype

normalized to same trial controls. The symbols within the bars

represent the magnitude for each trial. Phenotypes tested were

indicated in the Y-axis: (A) lifespan, (B) dauer entry, (C) dauer

entry in the daf-2(e1368) background, (D) dauer entry in the daf-

28(sa191) background, (E) dauer exit, (F) thermotolerance, (G)

pathogen resistance, and (H) reproductive span. Bars and symbols

were colored as indicated in the legend (bottom right).

(PDF)

Figure S2 qPCR expression graphs. The graphs represent the

fold difference expressions compared to the wild type. Statistical

significant changes are highlighted in red.

(PDF)

Figure S3 Network robustness and small world properties.

Distributions obtained by bootstrapping analysis for (A) shortest path

length, (B) clustering coefficient, and (C) small worldness based on the

shortest path length and clustering coefficient. The values for the ILP

network are indicated by a red vertical line in (A–C). Percentile of the

ILP network compared to the random distribution is indicated for

small worldness. (D–E) Rank order of the ILPs for clustering

coefficient (D) and closeness (E). (F–G) Scatterplot of clustering

coefficient (F) and closeness (G) versus pleiotropy as defined in

Figure 2 along with P and R values for linear correlation. (H–K) The

mean and standard deviation of the ranking after robustness analysis

of each gene according to (H) degree, (I) betweenness centrality, (J)
clustering coefficient, and (K) closeness centrality.

(PDF)

Table S1 Strain list.

(XLS)

Table S2 Summary of data from all screens.

(XLSX)

Table S3 Rescue experiments. For each experiment, the strain

used for each rescue experiment is indicated in parenthesis after

the genotype tested. Effect refers to the p-value significance

difference between the mutant versus the control strains. Rescue
Effect refers to the p-value significant difference between the

mutant strain with and without a rescuing transgene. Rescued
Effect indicates the p-value significance difference between the

mutant strain with a rescuing transgene and the control strain. (*)

For the ins-14 rescue experiments, data from two trials (DA R3

and DA R4) were pooled together to obtain sufficient power for

statistical analysis.

(XLSX)

Table S4 qPCR primer list.

(XLSX)

Table S5 qPCR data. Statistical analysis of the qPCR showing

the T-statistics from a linear model, the q-value, the p-value and

the means and SEMs normalized to wild type.

(XLSX)

Table S6 Summary of double mutant interactions in dauer

entry. Positive and negative p values represent cases where the

mutant dauer entry proportion is larger or smaller than the

control, respectively. Significant p values (at 0.05 level) are

coloured in pink or blue for higher or lower fractions of dauer,

respectively.

(XLSX)

Table S7 Dauer analysis of the daf-28; ins-33; ins-35 triple

mutant strain. Statistical analysis of the differences in rates of

dauer entry among strains with all possible combination of the 3

genes.

(XLS)
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